MultiObjective Optimization using Evolutionary Computation Techniques
نویسندگان
چکیده
منابع مشابه
Multi-Objective Optimization using Evolutionary Computation Techniques
In this paper an EP and PSO based optimization algorithms have been proposed for solving optimal power flow problems with multiple objective functions. These algorithms take into consideration all the equality and inequality constraints. The improvement in system performance is based on reduction in cost of power generation and active power loss. The
متن کاملMultiobjective optimization using evolutionary algorithms
Evolutionary algorithms (EAs) such as evolution strategies and genetic algorithms have become the method of choice for optimization problems that are too complex to be solved using deterministic techniques such as linear programming or gradient (Jacobian) methods. The large number of applications (Beasley (1997)) and the continuously growing interest in this field are due to several advantages ...
متن کاملMultiobjective evolutionary computation for supersonic wing-shape optimization
This paper discusses the design optimization of a wing for supersonic transport (SST) using a multiple-objective genetic algorithm (MOGA). Three objective functions are used to minimize the drag for supersonic cruise, the drag for transonic cruise, and the bending moment at the wing root for supersonic cruise. The wing shape is defined by 66 design variables. A Euler flow code is used to evalua...
متن کاملSolving Multiobjective Optimization Problems using Evolutionary Algorithm
Being capable of finding a set of pareto–optimal solutions in a single run, which is a necessary feature for multi–criteria decision making, Evolutionary Algorithms (EAs) has attracted many researchers and practitioners to address the solution of Multiobjective Optimization Problems (MOPs). In a previous work, we developed a Pareto Differential Evolution (PDE) algorithm to handle multiobjective...
متن کاملEvolutionary multiobjective optimization using a cultural algorithm
In this paper, we present the first proposal to use a cultural algorithm to solve multiobjective optimization problems. Our proposal uses evolutionary programming, Pareto ranking and elitism (i.e., an external population). The approach proposed is validated using several examples taken from the specialized literature. Our results are compared with respect to the NSGA-II, which is an algorithm r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2011
ISSN: 0975-8887
DOI: 10.5120/3345-4609